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The contact problem for a shallow shell containing a vertical crack is considered. The solution of the problem satisfies two inequality 
restrictions desen'bing the mutual non-interpenetration of the shell and a punch, and the condition of non-interpenetration for 
the crack faces. The purpose of this paper is to investigate a control problem using external loading with an objective functional 
de~eribin 8 the crack opening. The regularity of the solution is investigated near the tips of the crack. In particular, for a crack 
with zero opening the solution is shown to below to the class C ' .  The convergence of the solutions of the optimal control problems 
when the parameters are perturbed is analysed. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

C o n s i d e r  a sha l low shel l  whose  m e d i a n  sur face  occupies  the  d o m a i n  ~ = t i f f 'v ,  whe re  t i  C R 2 is a 
b o u n d e d  d o m a i n  with  s m o o t h  b o u n d a r y  F and  F~, is the  g r a p h  o f  the  funct ion  y = ¥(x) ,  x e [0, 1], (x, 
y )  e t i .  L e t  Z = (W, w) be  the  d i sp l acemen t  vec to r  for  po in t s  o f  the  m e d i a n  surface  o f  the  shell,  and  
W = (w 1, w2). W e  will in t roduce  the following no ta t ion  for  the  c ompone n t s  o f  the  s train and stress tensors  

eij= eo(v¢) + k jw 
f i l l  ---- e l l  + ke22, f22 = e22 + kell ,  

• 4" , X I --~-- X, E j(w) 2[, xj 

fl2 = (1 - k)e12 

x2 - y  

k = const, 0 < k < l/2 

We assume that the curvature of the shell satisfies k/j e C1(~ , ) .  Here and throughout i , j  = 1, 2. 
The energy functional of  the shell can be written in the form 

I'lu(Z)= ~B(w,w)+ ~(fij(W), eij(W))-(u,X) 

where u = (ul, u2, u3) is the external load vector, the brackets (. ,.) denote integration over D~, and the 
bilinear form describing the bending properties of the shell has the form 

B(w,'o) = ~ (wxx'o ~ + wyy'Oyy + kwx~'O~,y + kw.~,y'Oxx + 2(I- k )w~,'o~, )dti~/ 
Qv 

For simplicity we specify the following boundary conditions on the outer boundary 

w = ~ w l ~ n = W = O  on F 

The model of the shell under consideration is therefore described by the fact that its median surface 
is identified with a plane domain, while at the same time the curvature of the shell is not in general 
zero. Horizontal displacements in this model depend linearly on the distancez from the median surface 
(see [I]) 

W ( z ) = W - z V w ,  Iz l~<8 
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where z = 0 corresponds to the median surface. Let ¥ e H30(0, 1), and v be the normal to the curvey 
= ¥(x),x e (0, 1). Then the condition of mutual non-interpenetration for the crack faces can be written 
as follows: 

[W-zVw]v~,o on rw, ,z,~<8, vf(-¥x,D/l~fi-~¥~ 

where [V] = V + - V- is the jump in the function V, while V -+ correspond to the positive and negative 
directions of v. We can write this condition in the equivalent form 

[W]v~>Sl[0w/Ov] I on F v (1.1) 

We assume that the surfacez = dp(x,y) describes the shape of the punch, (x,y) • f~, dp ~ CI(~)NC**(f~). 
In this case the mutual non-interpenetration condition for the shell and the punch, in the linear 
approximation, has the form [2, 3] 

w - W V O ~ O  in f~v (1.2) 

Suppose further that the subspace HI'°(D~) of the Sobolev space Hl(f~v) consists of elements 
which vanish on F. Elements from H2'°(D~) vanish similarly together with their derivatives on F, H2'°(f~) 

2 - -  1 0  1,0 ~ 0  • - -  C H (t~).  We denote by H( t~ )  the space H '  (D~) x H (~v) x H (D~) and introduce the set 
of admissible displacements of the shell 

K s = {(W, w) E H(t'~v)I (W, w) satisfy (l.I), (1.2)} 

Here inequalities (1.1), (1.2) are assumed to be satisfied almost everywhere in the Lebesgue sense 
on F~, and in D~. We assume that ¢b < 0 on F, so that the set Ks is non-empty. The equilibrium problem 
for a shallow shell with a solution satisfying the non-interpenetration conditions (1.1), (1.2) can be 
formulated variationally 

inf r l , (x)  (1.3) 
~eg8 

Because~ftheconv~xityanddi~re~tiability~ftheftmeti~na~H~nH(~`v)~r~b~em(~.3)isequiva~ent 
to thevariationalinequality 

n~,(z)(~-Z)~o, Z~Ks, V~Ks 

where II,',(X ) is the derivative of the functional IIu at the point ~. This inequality has the form 

B(w, ~ -  w) + (kuoij, ~ - w) + (o i j , e i j (W - W))-(u,~-X)~>O (1.4) 

~ g  s, V '~=(W,~)¢Ks  

It can be proved that the functional flu is coercive on H(D~). Using the weak semicontinuity from 
below of this functional, we verifij that a solution of the equih%rium problem (1.4) exists. It will be unique. 

We shall investigate the problem of controlling the external loads with an objective functional 
describing the crack opening [4] 

Ja(u)= l ltxJlar) 
F¥ 

where g = g(u) is the solution of the variational equation (1.4). 
Let U C [L2(f~)] 3 be a convex, dosed and bounded set. The problem of finding the crack with the 

least opening can be formulated as follows: 

inf Js(u)  (1.5) 
ueU 

Here and below we emphasize the dependence of the objective functional on 8, because later we 
shall investigate the convergence of the solutions of problem (1.5) when 8 ~ 0. 

Suppose that 8 is fixed for the time being. We shall prove that a solution of the optimal control program 
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(1.5), (1.4) exists. We choose a minimizing sequence Um ~ U. It is of  course bounded in L2(~), and so 
we can assume that 

Um -~ u weakly in L2(f2), u ~ U (1.6) 

For every m one can find a unique solution 7.~ ~ Ks of the problem 

11~, (Zm)(~- Zm) ~ 0 ~ e K~ (1.7) 

Fixing the test function i, we derive the estimate 

which is uniform with respect to m. 
Having by necessity to choose the sequence, we assume that as m ~ 

Zm ~ X weakly in H(D~), strongly in L2(flv/) (1.8) 

The convergence of (1.6) and (1.8) enables us to take the limit in (1.7) and thus show that Z = Z(u) • 
+ • 1 Moreover, additionally assuming that Z~, -~ Z- weakly m L (F~,), we obtain 

inf Js(~') = lira infJs(um) ~> Js(u) ~ inf Js(~)  
~'~U " m~*- ~'~U 

This also means that u is a solution of problem (1.5), (1.4). The assertion is proved. 

2. T H E  S M O O T H N E S S  OF T H E  S O L U T I O N  

We note that if the crack opening is zero on F~,, i.e. [~] = 0, the value of the objective functional 
Js(u) is zero. We also assume that near F v the punch does not interact with the shell. It turns out that 
in this case the solution Z = (W, w) of  problem (1.4) is infinitely differentiable in a neighbourhood 
of points of  the crack. This property is local, so that a zero opening of the crack near the fixed 
point guarantees infinite differentiability of  the solution in some neighbourhood of  this point. Here  it 
is undoubtedly necessary to require appropriate regularity of the curvature ko and the external forces 
u. The aim of the following discussions is to justify this fact. Here the external load u is taken to be fixed. 

Let  O C R 2 be a bounded domain with smooth boundary ~/and outward normal n = (nl, n2). We 
introduce the following notation for the bending moment and shear forces on V 

m ( w ) = k A w + ( 1 - k )  ~2w, t(w)= ~-~-Aw+(l ~03w 
~n 2 ~n - k ) t)nt)2s ' s -- ( - n 2  , nl ) 

1/2 3/2 The quantities re(w) and t(w) can be interpreted as elements from the spaces H -  (7) and H -  (y), 
2 2 2 respectively if w e H (O), A w ~ L (O). Moreover, the following generalized Green s formula holds 

Bo(w,D)=(m(w),~-~-~ -( t (w),D)2~ +(A2w,'o)o, V1)eH2(O) (2.1) 
X ~n 1½,v 2- 

The symbol O means that the integration is performed over O, while the brackets (- ,.). ~ denote the 
--/7 p duality between H (y) and H (y). All the condmons, Imposed on the operators m(w), t(w) and necessary 

for the validity of  formula (2.1), are verified in [6]. Another Green's formula is also needed. Suppose 
2 2 that 0 --- (~1, ~2) e L (O), div 0 E L (O). Then the quantity On is defined on the boundary as an element 

of  H-1/2(y), and we have the formula [7] 

(div0, W)o = (On, w)½. v - (0, Vw) o, Vw ~ H I (O) (2.2) 

We shall investigate the regularity of  the solution in a neighbourhood of the crack tip x ° -- (1, 0). 
Suppose first, that (14, w) is a solution of  the equilibrium problem (1.4). We assume that a neighbourhood 
W o f  the graph F~, exists such that for any function tO e C0"(W) there is an e > 0 for which 
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etp + w - WV~ ~ ~ almost everywhere in I4~" v (2.3) 

Condition (2.3) can be interpreted as the absence of contact between the shell and the punch in 
~ r , .  

We smoothly co, ntinue the function ¥(x) for x > 1, keeping the previous notation. We take an arbitrary 
function 9 ~ Co (R(x°)), where R(x °) is a circle centred at the point x ° such that R(x °) C W. Then 

[~0/0v] = 0 on R(x°)t~Fv 

From what has been said, for small e > 0 the function (W, etp + w) belongs to the set Ks. Outside 
R(x °) the function ~ can be taken to be zero. We now substitute (W, eq~ + w) into (1.4). We arrive at 
the inequality 

a+(w, ~) + B_(w, f#) + (ko~ o, ~O) ~ (u3, ~) (2.4) 

The plus and minus subscripts denote integration over O + and O-, respectively, where O + = R(x °) 
N {y > ¥(x)}, and similarly for O-. The boundaries of the domains O-  are denoted by ~ .  Note that 
when (2.3) holds, the equation 

A2w + koa 0 = u3 (2.5) 

is satisfied in l¥ff" v in the distribution sense. 
In order to verify this, it is sufficient to substitute test functions of the form Z + e0 into (1.4), where 

O is an infinitely differentiable function with support l~Fv, and e is a small quantity. Thus, applying 
Green's formula (2.1) to B±(w, q~) in (2.4) and using Eq. (2.5), we obtain 

(m(w), a~ ~ -(t(w),~0))~.~¢_ +[m(w), O-~+ ~ -(t(w),~)y2.,t+ >t0 (2.6) 
an-/½a- X On 1½.~÷ 

Note that in view of the smoothness of the solution the function A2w + ko% / - u3 is zero almost 
everywhere in ~ , and so the integral over the domain vanishes. 

Below, v will als~ denote the normal to the continued graph Fv of the function ¥(x). Using the 
arbitrariness and finiteness of q) in R(x°), from (2.6) we find 

(ira(w)], 09 / an)y2, v = O, ([t(w)],~o)3~,v = O, V~0 ~ c~(n(x °)) (2.7) 

where T can be taken to be either 7 + or 7-. The proven identities (2.7) mean that 

[m(w)] = 0, tt(wr]= o on rv (2.8) 

When conditions (2.3) are satisfied we also have the following distribution equations 

-aoi/ax~ = u~ in WWv (2.9) 

This is proved simultaneously with (2.5). 
Suppose that the function 0 --- (01, 02) belongs to C~*(f~) and has support in R(x°). Then, as before, 

for small s > 0 we have (W + e0, w) ~ Ks. We substitute (W + e0, w) into (1.4) as a test function. We 
obtain 

(o;j. e0(e))+ + (%. E0(e))_ = (u, e;) 

Using Green's formula (2.2), it follows from this that 

-([o,/v~ 1, 0i )~.~ - (a% / axj, 0~ )+ - (ao 0 / axj, 0, )_ I> %, 0~ ) 

where one can take either T + or y- to be T. Bearing in mind Eq. (2.9), the relation obtained gives 

. . ( t % v j l ,  e,)~,~ = o, v o ~  ~(R(x°)) 
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i.e. 

[o0v j I=0  on ['v (2.10) 

The estabfished properties (2.8 2 and (2.10) enable us to investigate the regularity of the solution in 
a neighbourhood of the crack tipx v in the case when there is no contact between the shell and the punch 
near to x °, and the crack opening is zero. 

Theorem 1. Suppose that kij, u ~ C"(R(x°)), that condition (2.3) is satisfied, and that [%] = 0 on R(x °) 
N F,. Then % ¢ C**(R(x°)). 

Proof. We shall show that Eq. (2.5) is satisfied in the distribution ser~e in R(x°). The condition of the 
theorem and inequality (1.1) ensure the validity of [~¢/0v] = 0 onR(x ~) N F w Bearing in mind that w 

1-12(0 ± ) and that [w] = 0 on R(x °) f'l Fv, we conclude that w ~ H2(R'(x°)). 
Note that Eq. (2.5) is satisfied in O ±, and so A~v ~ L2(O±). 
Let the brackets (., q~) denote the action of the distribution on the element ~p. We choose (p e C*~(R(x°)). 

Using formula (2.1) we have 

(A2w, ~0) = B+(w, [p) + B (w,(p) = -([re(w)], 0q~ / 0v))~.,t + ([t(w)], ~0)~., I + 

+(a2w, ~0)+ + (a~w, ~0)_ 

The jumps [m(w)], [t(w)] are zero, from which the necessary equations that prove the assertion follow 

(A2w "4" kij(~ij - u3, ~0) = (~2w "~- kij(~ij - u3, f~0)+ -4- (A2w -I- kij(~ij - u3, ~0)_ - 0, 

v~o G C~'o (R(x°)) 

We shall now show that Eq. (2.9) is satisfied inR(x°). Because [H e] = 0 onR(x °) N F v and We Hi(o±), 
we have W ~ Hl(R(x°)). 

, ~  . . . ÷ 

Consequently, o~ =- clj(~) ~ L (R(x°)). From the validity of Eqs (2.9) m O-, we conclude that Ooi./Oxj 
2 4 -  • , • -~-  L (O-). This means that one can apply Green s formula (2.2) to the domains O-. 

Let 9 ~ C**0(R(x°)) • We have 

= -([o#v) ], qu)•. v - (Oc~ 0 10xj + ui, cp)+ - (ik~ 0 10x) + u i, q~)_ = 0 (2.11) 

However, the jumps [o0v, ] are zero, and Eqs (2.9) are satisfied in O ±. Hence the right-hand side of • . • ~ . • 
(2•I I) vanlshes, which lmphes the vahdity of 

"~{~i /~Xj= lg i in R(x °) (2.12) 

in the distribution sense. Equations (2.12) can be written as linear equations in two-dimensional theory 
of elasticity 

L(W) = F in R(x o) (2.13) 

with right-hand side F = (fl, f2), wherefl = Ux + (kllw + kkzzw)x + (k12w)y and f2 is defined similarly• 
Moreover, Eq. (2.5) can be conveniently represented in the form 

A2W = U3 -- kij(~i j in R(x  O) (2.14) 

1 0 The right-hand side of Eq. (2.13) belongs to H (R(x))  and the right-hand side of (2.14) belongs to 
L2(R(x°)). Applying in turn the results on the internal regularity of the solutions of Eqs (2.13) and (2.14) 
[5, 9], we obtain the necessary inclusion 

% = (W, w) ~ C-(R(x°)) (2.15) 

The theorem is proved. 
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We will make a number of remarks. For the inclusion (2.15) to be valid it is sufficient only to require that (2.3) 
is satisfied in R(x°)Wv for tp ~ C~o(R(x°)). 

According to inclusion theorems the function w is continuous in f~ ~. Hence if V(I, -- 0 in some neighbourhood 
Wof the graph F v and w > • in W (and, in particular, w ± > • on F~), then condition (2.3) is obviously satisfied. 

0 . . . .  0 • . .  " • • • 0 Ifx m an mternal pomt of the crack, l.e.x ¢ F ~Fv, ff condition (2.3) is sattsfied and if [X] = 0 nearx,  then 
the correspondmg assertion on the infinite differentiability of X can be proved more stmply. 

We note that there have been investigations [10-12] of the asymptotic properties of solutions of the equations 
of the theory of elasticity and the biharmonic equation near the crack tip. Problems of choosing so-called extremal 
crack shapes have also been investigated [13, 14]. 

3. T H E  C O N V E R G E N C E  OF THE S O L U T I O N S  AS 8 ---) 0 

We consider the limiting case corresponding to 8 = 0 in (1.1). A restriction obtained in this manner 
corresponds to the condition of mutual non-interpenetration of the sides of the crack without including 
the thickness of the shell. We note that in taking full account of the thickness one must bearing mind 
that the stresses o# and the moments m(w) and shear forces t(w) depend on 5. Thus 8 = 0 in (1.1) carries 
the implication that the thickness of the shell is taken to be fixed, and the non-interpenetration conditions 
on the crack faces are described approximately. 

Thus, in the case under consideration the solution satisfies the following restrictions 

[W]v>~0 on Fv; w-WVO>~Oin f~, (3.1) 

The set of admissible displacements in this ease has the form 

Ko = {(w, w) w) satisfy conditions (3.1)} 

Here the solution of the problem of minimizing the functional 1-I u on the set K0 is equivalent to the 
solution of the following variational inequality 

H ~ , ( z X z - z ) ~ O ,  z c K  o, V-ZXEK o (3.2) 

Let the set U be chosen as before. We consider the optimal control problem 

infJo(U), Jo(u)= J ~xldFv (3.3) 
uEU F¥ 

where X is defined in (3.2) for given u. A solution of problem (3.3), (3.2) exists (but we will not dwell 
on the proof). 

We introduce the following notation 

Js -- inf Js(u), J0 --- in.f Jo(u) (3.4) 
ucU u~U 

The connection between solutions of problems (3.3), (3.2) and (1.5), (1.4) is characterized by the 
theorem given below. Let us be the solution of problem (1.5), (1.4), while Zs corresponds to us and is 
given by (1.4). 

Theorem 2. Let  VO - 0 in some neighbourhood W of the graph F v. Then one can choose from the 
sequences us ,  ~ subsequences such that as 5 --> 0 

us --> uo wealdy in L2(f~); ~-->z0wealdyinH(E~, ) ;  Js --> Jo 

where u0 is a solution of problem (3.2), (3.2), and ~0 corresponds to u0 and is given by (3.2). 

Proof. Let ~ ( u )  be a solution of the variational inequality (1.4) with given fixed u ~ U. We take an 
arbitrary element ~ ¢ K~. Then ~ ~ K¢ for all 8 ~ 8o. We substitute ~ into (1.4) as a test element. We 
arrive at the estimate 

lZs (u)IH(tav) ~< c 
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which is uniform with respect to 8 ~< rio. Consequently, one can assume that when 8 ~ 0 

gs(u) ~ ~ weakly in H(D~) (3.5) 

[Zs(u)] "-~ [Z] weakly in LI(F~,) (3.6) 

~lIaws(u)/~v]l ~ o strongly in L2(Fv) (3.7) 

We choose an arbitrary element ~ e K0 and construct, in accordance with the lemma (see below), a 
sequence Z8 ~ Ks which strongly converges to ~ in H(D~). Substituting the Xs as test functions into 
inequality (1.4), using (3.5) we take the limit 8 ~ 0. Condition (3.7) ensures the inclusion ~ e K0. The 
limiting variational inequality has the form 

n~(~X~-~)~o, ~ero ,  ~ r 0  

which means ~ = Z(u). Here, from (3.6), we obtain 

JS(u) "-} Jo(u), 8 -~ 0 (3.8) 

Suppose that u is now a solution of the optimal control problem (3.3), (3.2). From (3.8) we have 

Js ~ &(u) --} Jo(U) =J0 

Hence 

lira sup Js ~ J0 

On the other hand, bearing in mind the boundedness of the set U, we can assume 

luslL 2 (a) ~< c 

uniformly with respect to 8. Then from the variational inequalities 

n~s(xsX~-zs)~o, gsEgs,  ~r~ZEKs 

we derive the estimate 

(3.9) 

(3.10) 

(3.11) 

I I  U 

!lZsIIm=,) ~< c (3.12) 

uniform in 8. 
According to (3.10) and (3.12), we can assume without loss of generality that 

us ~ u0 weakly in L2(t)) 

~ Z0 weakly in H(f~) ,  strongly in L2(D.,) 

81[aws(u)/av] I ~ 0 strongly in L2(Fv) 

This convergence, and the lemma proved below, enable us to take the limit in equality (3.11) and 
thus obtain 

n~o(ZO)(~-~o)~>o, Zo~Ko, V-~ZEKo 

so that ~ = g(Uo). As in the proof of relation (3.8), it can be shown that Js(u~) ~ Jo(uo) and therefore 

lim infjs ;~ J0(uo) (3.13) 

Comparing (3.9) and (3.13), we conclude that u0 is a solution of the optimal control problem (3.3), 
(3.2) andjs--}Jo. The theorem is proved. 
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It remains to establish the assertion used in the proof of Theorem 2. 

L e m m a .  Let V ~  - 0 in some neighbourhood W of the graph Fv/. Then for any fixed element ~ -- 
(IV, • ) ~Ko one can construct a sequence ~s - (Ws, ws) E Ks such that 

( Ws, ~ ) --* W, ~ strongly in H(f2v/) (3.14) 

Proof. We construct a function ;~ from the space [H 1'°(D~)]2 equal to zero outside W and with the property 

on r v 

If such a function is constructed, the sequence (W-'s, ~s) = (W + 81¢, ~) will be found. Indeed, the convergence 
of (3.14) is obvious, and moreover 

o,,  r v 

We therefore choose a simply connected domain O, ¢9 C f~ with smooth boundary V such that F v is a part of  3', 
1/2 and the outward normal  n v" • = (nl,  n2) to 3' coincides with v on r We put  g = - [  [~/~n] [ Then  g ¢ H (3'), with 

g " 0 outside I" w Since the components  of the normal  n belong to C1(3'), we havegn E [H1/2(3')] 2. Hence  a function 
W ° ~ [//1(O)] 2 exists such that [5] W ° = gn on 3'. 

We put  W ° ~ 0 outside O. Let ~pbe an infinitely differentiable function on f~ such that ¢p - 1 on Fv/and q~ - 0 
outside W. The required function W is obtained as follows: W = ~pW °. 

The lemma is proved. 

In conclusion we note that the conditions of  Theorem i do not, in general, ensure the validity of  the 
inclusion (2.15) for the solution Z = (W, w) of  problem (3.2). This is related to the fact that in the 
case of  problem (3.2) the jump [~}w/~v] is not, in general, zero on F~, N R(x°), and hence when [Z] = 0 
one cannot assert that w E H2(R(x°)). 
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